Seminário de Otimização & Problemas Inversos
Título: Técnicas de análise convexa aplicadas a problemas inversos não lineares
Palestrante: Lucas Marcilio (UFSC)
Resumo: Diversos fenômenos físicos e problemas do cotidiano são interpretados como problemas inversos. Os problemas inversos mais complicados geralmente são classificados como não lineares e mal postos. Para a resolução destes, é necessária a implementação de algum método de regularização que calcule uma solução numérica apropriada. Nesta palestra será apresentado o Método das Projeções Relaxadas aplicado a problemas inversos não lineares e localmente mal postos entre espaços de Banach. O método é considerado uma variação do método de Levenberg-Marquardt cujo termo de penalização é dado pela distância de Bregman induzida por um funcional uniformemente convexo. Técnicas de análise convexa são usadas em sua definição formal, assim como em sua análise de convergência. Também será discutida a implementação computacional do método no problema da Tomografia por Impedância Elétrica, segundo o Modelo Completo de Eletrodos. Testes numéricos desta abordagem comprovam os resultados teóricos do método.
Data: Segunda-feira, 25 de agosto às 14h:00m
Local: Auditório Airton Silva, Departamento de Matemática – MTM /CFM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E.Krukoski
Tags:
distância de Bregmanespaços de BanachMétodo das Projeções Relaxadasnão-linearesotimizaçãoProblemas inversosSeminario
Seminário Especial de Álgebra
RELATION MORPHISMS OF DIRECTED GRAPHS
Prof. Dr. Piotr Hajac (IMPAN-Varsaw)
Abstract: Associating graph algebras to directed graphs leads to both covariant and contravariant functors from suitable categories of graphs to the category k-Alg of algebras and algebra homomorphims. As both functors are often used at the same time, one needs a new category of graphs that allows a “common denominator” functor unifying the covariant and contravariant constructions. In this talk, I will show how to solve this problem by first introducing the relation category of graphs RG, and then determining the concept of admissible graph relations that yields a subcategory of RG admitting a contravariant functor to k-Alg simultaneously generalizing the aforementioned covariant and contravariant functors. I will illustrate relation morphisms of graphs by the naturally occurring example of including Cuntz algebras into matrices over Cuntz algebras. Based on joint work with Gilles G. de Castro and Francesco D’Andrea.
Data e Horário: Segunda feira, dia 18 de agosto de 2025, 16h
Local: Auditório Airton Silva, Departamento de Matemática – MTM /CFM
E. Krukoski
Tags:
Álgebradirected graphshomomorphimsk-AlgMORPHISMSPiotr HajacSeminario
Seminário de Álgebras de Operadores
Amenabilidade e C∗C *– álgebras de Følner
Rodrigo Samuel Roemig (UFSC)
Abstract: Amenabilidade é um conceito muito importante e bem consolidado na teoria de grupos. Dada a existência de construções como as C∗C* -álgebras de grupo que servem como ”pontes” entre o estudo de grupos e de álgebras de operadores, fica a questão: é possível definir amenabilidade para uma C∗C* -álgebras qualquer? Uma das respostas mais famosas a essa pergunta é o conceito nuclearidade. Porém, nesta palestra abordaremos outra possibilidade: as C∗C* -álgebras de Følner.jkj
Após uma breve revisão sobre amenabilidade de grupo, definiremos nets de Følner para C∗C* -álgebras, traços amenable e C∗C* -álgebras de Følner (via aproximações por aplicações u.c.p.). Apresentaremos um teorema que unifica as três abordagens acima e algumas consequências no caso de produtos cruzados (parciais).
E. Krukoski
Tags:
álgebras de FølnerÁlgebras de OperadoresAmenabilidadeaplicações u.c.p.nets de FølnerSeminario
Seminário de Otimização & Problemas Inversos
Título: Second-order dynamical systems associated with a class of quasiconvex functions
Palestrante: Raul T. Marcavillaca (CMM, Chile)
Resumo: In this talk, we explore second-order gradient dynamical systems smooth strongly quasiconvex functions for strongly quasiconvex functions, without assuming the usual Lipschitz continuity assumption on the gradient. We exhibit exponential convergence of the trajectory towards the solution. Moreover, also in the quasiconvex setting, we consider second-order dynamics incorporating Hessian-driven damping. Finally, we show that explicit discretizations of these two dynamical systems yield different gradient-type methods, establishing the linear convergence of both methods under suitable parameter conditions.
Data: Segunda-feira, 26 de Agosto de 2024 às 14 horas
Local: Auditório Airton Silva, MTM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
otimizaçãoProblemas inversosRaul T. MarcavillacaSeminario
Seminário de Otimização & Problemas Inversos
Título: Um algoritmo para minimização em variedades de Stiefel
Douglas S. Gonçalves (UFSC)
Resumo: Discutiremos sobre um algoritmo para minimização de funcionais não-lineares sobre variedades de Stiefel. Mais especificamente, vamos considerar problemas de otimização nos quais a variável de decisão é uma matriz n por p (p < n) com colunas ortonormais. Com base na transformação de Cayley, a abordagem consiste em uma busca não-monótona sobre um arco viável ao longo de uma direção de descenso suficiente. Além de mostrar que pontos limite da sequência gerada pelo algoritmo são estacionários, destacamos o custo computacional de O(np^2) + O(p^3) por iteração, que é interessante quando p << n. Por fim, iremos reportar resultados numéricos em três classes do problema e comparar com algoritmos bem estabelecidos na literatura. Este é um trabalho em conjunto com Juliano B. Francisco.
Palestrante: Douglas S. Gonçalves (UFSC)
Data: Segunda-feira, 26 de Junho , 14h
Local: Auditório Airton Silva do Departamento de Matemática
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
algoritmoMatemáticaminimizaçãootimizaçãoProblemas inversosSeminariovariedades de Stiefel
Seminário de Otimização & Problemas Inversos
A Cubic Regularization of Newton Method with Finite-Difference Hessian Approximations
Max L. N. Gonçalves (UFG)
Resumo: In this talk, we present a version of the Cubic Regularization of the Newton method for unconstrained nonconvex optimization, in which the Hessian matrices are approximated by forward gradient differences. The regularization parameter of the cubic models and the accuracy of the Hessian approximations are jointly adjusted using a nonmonotone line-search criterion. Complexity analysis of the proposed algorithm is discussed and preliminary numerical experiments are presented to confirm our theoretical findings.
Palestrante: Max L. N. Gonçalves (UFG)
Data: Segunda-feira, 05 de Junho , 14h
Local: Auditório Airton Silva do Departamento de Matemática
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
Cubic RegularizationFinite-DifferenceHessian ApproximationsInversosMax L. N. GonçalvesNewton MethodotimizaçãoProblemasSeminario
Título: O método do valor quasi-limite parametrizado para problemas inversos de fonte dependentes do espaço
Palestrante: Daniel Alfonso Sánchez Vega (UFSC)
Resumo: Os problemas inversos de fonte surgem em um amplo espetro de aplicações do mundo real, identificação de dipolos eletrostáticos na cabeça humana onde os dados de fronteira são coletados via eletrodos dispostos em uma loca ̧c ̃ao da cabeça, localização de fontes desconhecidas de contaminantes de águas subterrâneas entre outras. Sendo um método diferente da regularização de Tikohnov, o método do valor quasi-limite foi proposto e analisado como uma forma eficaz de regularizar tais problemas de fonte inversa. No entanto, solucionadores diretos ou iterativos rápidos para os sistemas lineares de larga escala resultantes de uma só vez raramente foram estudados na literatura [JLW23]. Neste trabalho consideramos o (ISP) [DFY09] de reconstruir o termo fonte dependente do espaço desconhecido em uma equação de difusão não-homogênea utilizando o método de Crank-Nicholson [CN47] na primeira fase e, posteriormente, em uma segunda fase, apresentamos o (PQBVM) [JLW23] e mostramos que a matriz de discretização no tempo B é diagonalizável, e o número de condição de sua matriz de autovetores V exibe crescimento quadrático, o que garante que os erros de arredondamento devido à diagonalização sejam bem controlados. Em uma última fase apresentamos exemplos em 1D e 2D implementados no software MATLAB.
Data: Segunda-feira, 27 de Março , 14h
Local: Auditório Airton Silva, MTM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
Crank-Nicholsondiagonalizaçãométodo do valor quasi-limitenúmero de condiçãootimizaçãoproblema de fonte inversaProblemas inversosproblemas mal-postosregularizaçãoSeminario
Seminário de Otimização & Problemas Inversos
Título: Convergência superlinear do método de reflexões circuncentrado
Palestrante: Roger Behling (UFSC)
Resumo: Recentemente, desenvolvemos o primeiro método de reflexões circuncentrado (CRM) capaz de resolver problemas de viabilidade convexos sem reformulação em espaço produto. O novo método, denominado cCRM, trabalha em duas fases. Na primeira fase de cada iteração, cCRM encontra um ponto centralizado, enquanto que na segunda computa um circuncentro generalizado em paralelo a partir da centralização. Discutiremos o fato de cCRM convergir globalmente para uma solução do problema e apresentaremos um resultado, um tanto surpreendente, de convergência superlinear supondo uma condição de cota de erro aliada a hipótese de suavidade local dos conjuntos convexos considerados.
Data: Segunda-feira, 07 de Novembro , 14h
Local: Auditório Airton Silva, Departamento de Matemática – MTM /CFM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
otimizaçãoProblemas inversosRoger BehlingSeminario
Seminário de Otimização & Problemas Inversos
Título: A two-phase rank-based algorithm for low-rank matrix completion
Palestrante: Douglas S. Gonçalves (UFSC)
Resumo: Matrix completion aims to recover an unknown low-rank matrix from a small subset of its entries. In many applications, the rank of the unknown target matrix is known in advance. In this paper, first, we revisit a recently proposed rank-based heuristic for “known- rank” matrix completion and establish a condition under which the generated sequence is quasi-Fejér convergent to the solution set. Then, by including an acceleration mechanism similar to Nesterov’s acceleration, we obtain a new heuristic. Even though the convergence of this new heuristic cannot be granted in general, it turns out that it can be very useful as a warm-start phase (phase one), providing a suitable estimate for the regularization parameter and a good starting point to an accelerated proximal gradient algorithm (phase two) aimed to solve a nuclear-norm regularized problem. Numerical experiments with both synthetic and real data show that the resulting two-phase rank-based algorithm can recover low-rank matrices, with relatively high precision, faster than other well-established matrix completion algorithms.
Data: Segunda-feira, 24 de Outubro de 2022 , 14h
Local: Auditório Airton Silva, Departamento de Matemática / CFM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
otimizaçãoProblemas inversosSeminario
Seminário de Otimização & Problemas Inversos
Título: Métodos não lineares para inversão tomográfica
Palestrante: Eduardo Miqueles (LNLS)
Resumo: Alguns problemas de inversão tomográfica que ocorrem em um laboratório de luz síncrotron de 4a geração (Sirius/CNPEM), serão revisitados. Abordaremos as técnicas convencionais de inversão para problemas de imagem que fazem uso de um sub-problema de viabilidade, onde a recuperação da fase é de essencial importância.
Data: Segunda-feira, 26 de Setembro , 14h
Local: Auditório Airton Silva, Departamento de Matemática – MTM /CFM
Maiores informações: http://mtm.ufsc.br/~maicon/seminar
E. Krukoski
Tags:
inversão tomográficaMétodos não linearesotimizaçãoProblemas inversosSeminario